Spatial overlap of ON and OFF subregions and its relation to response modulation ratio in macaque primary visual cortex.
نویسندگان
چکیده
We studied the spatial overlap of on and off subregions in macaque primary visual cortex and its relation to the response modulation ratio (the F1/F0 ratio). Spatial maps of on and off subregions were obtained by reverse correlation with a dynamic noise pattern of bright and dark spots. Two spatial maps, on and off, were produced by cross-correlating the spike train with the location of bright and dark spots in the stimulus respectively. Several measures were used to assess the degree of overlap between subregions. In a subset of neurons, we also computed the F1/F0 ratio in response to drifting sinusoidal gratings. Significant correlations were found among all the overlap measures and the F1/F0 ratio. Most overlap indices considered, and the F1/F0 measure, had bimodal distributions. In contrast, the distance between on and off subregions normalized by their size was unimodal. Surprisingly, a simple model that additively combines on and off subregions with spatial separations drawn from a unimodal distribution, can readily explain the data. These analyses clarify the relationship between subregion overlap and the F1/F0 ratio in macaque primary visual cortex, and a simple model provides a parsimonious explanation for the co-existence of bimodal distributions of overlap indices and a unimodal distribution of the normalized distance.
منابع مشابه
Analogues of simple and complex cells in rhesus monkey auditory cortex.
Receptive fields (RFs) of neurons in primary visual cortex have traditionally been subdivided into two major classes: "simple" and "complex" cells. Simple cells were originally defined by the existence of segregated subregions within their RF that respond to either the on- or offset of a light bar and by spatial summation within each of these regions, whereas complex cells had ON and OFF region...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملAn fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli
ABSTRACT Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF). Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd. Results: Average percentage BOLD signa...
متن کاملSurround suppression supports second-order feature encoding by macaque V1 and V2 neurons
Single neurons in areas V1 and V2 of macaque visual cortex respond selectively to luminance-modulated stimuli. These responses are often influenced by context, for example when stimuli extend outside the classical receptive field (CRF). These contextual phenomena, observed in many sensory areas, reflect a fundamental cortical computation and may inform perception by signaling second-order visua...
متن کاملStability of simple – complex classification with contrast and 2 extra - classical receptive field modulation in macaque V 1
39 A key property of neurons in primary visual cortex (V1) is the distinction between simple 40 and complex cells. Recent reports in cat visual cortex indicate the categorization of simple 41 and complex can change depending on stimulus conditions. We investigated the stability of 42 the simple/complex classification with changes in drive produced by either contrast or 43 modulation by the extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2005